Effect of Carbon Nanotube Network Morphology on Thin Film Transistor Performance

نویسندگان

  • Marina Y. Timmermans
  • David Estrada
  • Albert G. Nasibulin
  • Joshua D. Wood
  • Ashkan Behnam
  • Dong-ming Sun
  • Yutaka Ohno
  • Joseph W. Lyding
  • Abdou Hassanien
  • Eric Pop
  • Esko I. Kauppinen
چکیده

The properties of electronic devices based on carbon nanotube networks (CNTNs) depend on the carbon nanotube (CNT) deposition method used, which can yield a range of network morphologies. Here, we synthesize single-walled CNTs using an aerosol (floating catalyst) chemical vapor deposition process and deposit CNTs at room temperature onto substrates as random networks with various morphologies. We use four CNT deposition techniques: electrostatic or thermal precipitation, and filtration through a filter followed by press transfer or dissolving the filter. We study the mobility using pulsed measurements to avoid hysteresis, the on/off ratio, and the electrical noise properties of the CNTNs, and correlate them to the network morphology through careful imaging. Among the four deposition methods thermal precipitation is found to be a novel approach to prepare high-performance, partially aligned CNTNs that are dry-deposited directly after their synthesis. Our results provide new insight into the role of the network morphologies and offer paths towards tunable transport properties in CNT thin film transistors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon nanotube thin film transistors for biomedical applications

CARBON NANOTUBE THIN FILM TRANSISTORS FOR BIOMEDICAL APPLICATIONS Vanessa Velasco August 5, 2010 The application of carbon nanotubes (CNTs) has captivated the curiosity of today's experts due to the escalating potential in the field of electronic detection of biomolecules. Their extreme environmental sensitivity and small size make them ideal candidates for future biosensing technologies. Recen...

متن کامل

Transparent and Solution Processable Low Contact Resistance SWCNT/AZONP Bilayer Electrodes for Sol-Gel Metal Oxide Thin Film Transistor

The contact resistance between source/drain electrodes and semiconductor layer is an important parameter affecting electron transporting performance in the thin film transistor (TFT). In this work, we introduced a transparent and the solution prossable single-walled carbon nanotube (SWCNT)/Al-doped ZnO nano particle (AZO NP) bilayer electrodes showing low contact resistance with indium-oxide (I...

متن کامل

Comparative study of solution-processed carbon nanotube network transistors

Carbon nanotube networks in thin-film type transistors were studied experimentally, comparing the use of pre-separated semiconducting enriched nanotubes (90% and 99% purity) to examine how topology affects the properties of the devices. Measurements are reported for two deposition methods used for network formation: random and spin-aligned deposition methods. The results show that the thin-film...

متن کامل

Solution-processed single-walled carbon nanotube field effect transistors and bootstrapped inverters for disintegratable, transient electronics

Articles you may be interested in A simple drain current model for single-walled carbon nanotube network thin-film transistors Mobilities in ambipolar field effect transistors based on single-walled carbon nanotube network and formed on a gold nanoparticle template Appl. Strain on field effect transistors with single–walled–carbon nanotube network on flexible substrate Complementary voltage inv...

متن کامل

Self-heating effect modeling of a carbon nanotube-based fieldeffect transistor (CNTFET)

We present the design and simulation of a single-walled carbon nanotube(SWCNT)-based field-effect transistor (FET) using Silvaco TCAD. In this paper, theself-heating effect modeling of the CNT MOSFET structure is performed and comparedwith conventional MOSFET structure having same channel length. The numericalresults are presented to show the self-heating effect on the I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012